
https://doi.org/10.24867/GRID-2018-p54 Professional paper

PDF METADATA AND ITS CONVERSION TO XJDF

Thomas Hoffman-Walbeck
Stuttgart Media University, Faculty Print and Media, Stuttgart, Germany

Abstract: In this paper, we show an example of how a product description such as the specifications of the
print substrate can be embedded as metadata in a PDF file using a well-documented technology for
variable data printing. We demonstrate the corresponding data structures in PDF. Moreover, we are
explaining how these structures can be integrated in a PDF file and retrieved afterwards with a JAVA
program. In addition, this metadata is converted into XJDF, which can be passed on to a commercially
available workflow management system. The basic structure of XJDF is explained as well as its generation
with JAVA.

Key words: Metadata, PDF, PDF/VT, XJDF, PrintTalk, JDF, CSV, Web-to-Print,
 Workflow Management System

1. INTRODUCTION

Typically, a production department of a print service provider (PSP) imports content data - mostly PDF -
and metadata - in formats like JDF or private XML - into a Workflow Management System (WMS).
PDF contains the layout definition of the pages that are supposed to be printed, while the metadata
incorporates the overall product specification as well as production issues. Metadata inside PDF are rarely
used for specifying the product or even controlling the production. Extended Metadata Platform (XMP)
(ISO 16684-1:2012, 2012), for example, is mainly used for storing information about page components
(like images) or about the PDF document itself (like contact details of the author). The XMP metadata
structure is not suitable for defining a product and its product parts.
The PSP usually receives PDF documents from the print buyer (PB) or some agency via an email
attachment, FTP-server, portal or some cloud storage. Metadata concerning the product definition,
however, is generated by the MIS of the PSB or by some PB’s Enterprise Resource Planning System (ERP).
The MIS-employee has to learn the PB’s product intentions and fill them in the system. Only in the case of
Web-to-Print (W2P) the PDF and the metadata stem from the same source, i.e. the W2P-Server.
In all other cases, the content data and the product specification are using different communication
channels, which can be time-consuming to synchronize. Anyhow, even with W2P two different files need
to be handled simultaneously. Thus, it would be easier if the product definition could be stored inside the
PB’s PDF, in particular since it describes the view of the PBs intention concerning the product in the first
place. This metadata could be generated by a W2P or even by the customer himself, using a plug-in for a
layout software for example.
The necessary technology became available with PDF/VT (ISO 16612-2:2010, 2010), an extension of
PDF 1.6 for transactional and variable data printing. Now, however, this is part of PDF 2.0
(ISO 32000-2:2017, 2017). The technology allows to define different product parts and to assign
individual pages of a PDF document to just these product parts. In addition, the final product as well
as each product part may refer to their own metadata structure, in which one can specify detailed
technical information. As an example, the desired printing substrates of the product parts or the overall
binding intent may be given. While PDF 2.0 provides the general file structure, the CIP4 organization
specified the necessary semantics in the papers “ICS-Common Metadata for Document Production
Workflows” (Prosi, 2015) and “ICS-IntentMetadata.PDF.1.5 ISO Draft” (Meissner, 2015). In this context,
please refer also to the draft ISO standard ISO/CD 21812-1 about print product metadata in PDF files
(ISO/DIS 21812-1).
At first, we will outline in this paper the technical structure of the PDF metadata with the help of an
example (a booklet with a cover and content). Moreover, we will explain how to implant such structure
into a PDF file by a JAVA program. The second part of this paper shows how to extract this information
from the PDF file and how to convert the data into a suitable input format for a WMS like JDF
(Meissner, 2018), XJDF (Meissner, 2018) and CSV (Wikipedia, 2018). However, in this paper we will only
describe in detail the conversion to XJDF through a JAVA program. Since the XJDF can be employed to
generate a new job within the WMS it will be embedding into a PrintTalk (Confluence.cip, 2018;

445

https://orcid.org/0000-0002-9719-8441
https://orcid.org/0000-0002-9719-8441�

Confluence.cip, 2015) business object of type “purchase order”. Finally, we will show what kind of results
can be gained when importing the generated PrintTalk/XJDF file into a commercially available WMS.
Figure 1 shows the modules of the implementation. Software  and  are stand-alone prototype
applications. The user enters details in a dialogue mask of program  in order to provide the necessary
metadata. Note that  will be executed by a PB, while  will precede the PSPs WMS.

Figure 1: Structure of the software applications:  writes CIP4 metadata into a PDF,
 reads the metadata and converts it to JDF, XJDF and CSV.

2. METHODS

For both  and  we are using the SDK IntelliJIDEA 2018.1 (Jetbrains, 2018) and the JAVA version 9.0.1.
For reading and writing the PDF/VT-structures, we employ the libraries PDFlib und PDI 9.1.2 (Pdflib, 2018)
of the company PDFlib GmbH. Furthermore we include different external libraries for the XJDF conversion
in : istack-commons-runtime-2.16.jar, jaxb-core-2.2.7.jar, jaxb-impl-2.2.7.jar, FastInfoset-1.2.12.jar,
commons-configuration-1.9.jar, commons-io-2.4.jar, commons-lang-2.6.jar, commons-logging-1.1.1.jar,
activation-1.1.1.jar, jaxb-api-2.2.7.jar, jsr173_api-1.0.jar, junit-4.10.jar, commons-lang3-3.4.jar, xJdfLib-
0.13.jar, xPrintTalkLib-0.13.jar, hamcrest-core-1.1.jar, annotations-13.0.jar, jaxb2-basics-runtime-0.9.1.jar.
The generated PDF should not be compressed, in order to analyse the file with a standard text editor.
Moreover the tool “Enfocus Browser Vers. 3.0” is very helpful to study the dictionary hierarchy in PDF.

3. RESULTS

In subsection 3.1, we will explain the document part (DPart) hierarchy inside PDF, which might reference
to one or more pages (page objects). Each DPart can also reference to an object called Document Part
Metadata (DPM), which in turn can contain technical details about the document part. We will present a
particular example. Then we will show in subsection 3.2 how to generate DPart und DPM object using the
PDFlib library for JAVA. The following two section cover details concerning . In section 3.3, we will
present the basic structure of XJDF. Section 3.4 primarily covers the conversion of the metadata
information into XJDF using the library xJDF of CIP4. Finally, in subsection 3.5 we will demonstrate the
XJDF import into a WMS.

3.1 Metadata structure

Figure 2 shows an example of a simplified PDF/VT structure. In the right-hand side, there are the normal
page objects, in the left-hand side the DPart objects.

Figure 2: DPart hierarchy with DPMs A, B, C and D

446

The leaves of the Dpart-tree are the product parts. They contain the information about the first and the
last page of the product part. The page number in the PDF document does not give the references, but
rather as the page object number, which identifies the PDF page object.
The actual definitions of the four DPart objects inside PDF are to be seen in figure 3. Please note that all
of them are contained on one stream object. Each DPart is a dictionary that begins with “<<” and ends
with “>>”. PDF dictionaries have two parts per entry. The first one is called key (e.g. /Type), the second
one is called value (e.g. /Dpart).

Figure 3: DPart objects in side PDF

Each DPart in figure 2 and 3 refers to a specific DMP, which hold information like the intended print
substrate or about the contact details of the PB. In application  the user provides this data via a GUI,
which is partially shown in figure 4. The entries in the text fields of the GUI are stored in a XML
preferences file in order to make them available for the next launch of the program. The entries can, of
course, alternatively edited directly in the XML file.

Figure 4: GUI of application 

The structures of three (slightly text formatted) DPMs can be seen Figure 5. The first one contains
information about the sender, the second one some characteristics about the final product, including the
binding intent. The product properties concerning the cover of the brochure are given in the third DPM.
In this example, only the dictionaries CIP4_BindingIntent and CIP4_MediaIntent have been
embedded. In similar manner, one can add other resources like CIP4_ColorIntent, CIP4_ or
CIP4_FoldingIntent. The metadata for the content has been omitted in figure 5.

447

Figure 5: DPM structures in PDF example

3.2 Writing metadata into PDF

Figure 6 shows a snippet of the code for writing the metadata into the PDF file. In the first two lines,
the PDFLib is open and the PDF file is read. In the next two lines DPM dictionaries are generated, that are
called CIP4_Intent and CIP4_Media_Intent. Here POCA stands for “PDF Object Creation API” and is
a PDFlib set of methods for creating objects like DPMs.
In the following line the dictionary CIP4_Media_Intent is filled in with the key-value pair
CIP4_Media_Intent/coverPaperWeight, whereas CIP4_MediaWeight is a metadata term defined
in [1] and coverPaperWeight an internal variable that holds the corresponding string that the user has
filled in via the GUI. The method “P.poca_insert” requires a String in the second parameter. The last line
inserts the dictionary CIP4_MediaIntent as a key/value pair into the CIP4_Intent dictionary. Using
this technology one can construct the tree of dictionaries in figure 5.

448

Figure 6: Writing a DPart and DPMs into PDF

3.3 XJDF

An introduction into XJDF technology can be found in (Meißner, 2017) and in (Meissner, 2018). Here we
only want to describe the XJDF outcome of software . The XJDF element in figure 7 is embraced by a
PrintTalk element.

Figure 7: PrintTalk element with XJDF sub-element

449

Sub-element of the PrintTalk is the business object Request, which in turn contains the
PurchaseOrder element (see (Confluence.cip4, 2018)). XJDF is a child element of PurchaseOrder.
Next, we find the ProductList in the hierarchy. In our example, there are three products in this list.
First, there is the final product with the value of the attribute IsRoot equals true. Next, the product
parts “cover” and “content” are also defined as product elements with attributes IsRoot equal false.
Each those products contain one (or more) Intent element(s), which describe the product or the
product parts from the PB’s point of voiew. Each Intent resource is specialized further by a Name attribute
and the according sub-element. Here, the final product contains a BindingIntent, the product parts
MediaIntents, which define the printing substrates. In each of them specific LayoutIntents have
been incorporated. Note that the attributes of these elements are not derived from a corresponding DPM
dictionary in the PDF file but rather from the DPart structures (see figure 3).
ResourceSets succeed the ProductList. Each ResourseSet contain one or more Resources, which in
turn can describe physical (like paper used by PSB, not defined in our example) or logical entities like
RunLists. The two RunLists in Figure 7 define the PDF pages of the product parts cover and content.
The attributes NPage denotes the “Number of Pages” and Pages the range of pages in the document.
Note that here the sequential page numbers in the document are referred to, while in figure 3, the PDF
internal page object numbers are stored.

3.4 Reading metadata from PDF and converting it into XJDF

Figure 8 and 9 show some code snippets for the extracting metadata out of a PDF/VT file. Reading the
metadata is actually mostly straightforward: In the first line, the PDFlib is opened, in the next the PDF
document is parsed in. After that, a path of a dictionary is specified from which entries would be
determined. This is done in the last two lines. The individual entries in the dictionary are accessed in the
notation of an array.

Figure 8: Reading values from a PDF/VT dictionary

Figure 9 shows a snippet of the method concerning the computing of page numbers using PDF page
object numbers. Here it is assumed that the page objects in the PDF file have the same order as the pages
in the PDFD file. The page object numbers can be arbitrarily. This assumption, however, is not true in
general (see F.4.2 in (ISO 32000-2:2017, 2017), p. 885)

Figure 9: Calculating a page number from PDF page objects

Figure 10 shows a snippet of the translation of the metadata to XJDF as shown in figure 7. Here the CIP4
library xJdfLib is used. In the first part, the resource MediaIntent is defined. The values
CIP4_PaperCover and CIP4_PaperCoverWeight are derived from the PDF metadata and were
originally put into the GUI of software  by user. In the second section, the product part Cover is set and

450

resource MediaIntentCover is added. The third paragraph determines the XJDF-structure with the
ProductList (broschur, cover and content). The generation of the ResourceSets are skipped in
figure 10. In the last part, finally, the PrintTalk envelope is built around the XJDF structure.

Figure 10: Generating XJDF

3.5 Importing XJDF into a WMS

The XJDF file from figure 7 was put in a suitable hot-folder of the Heidelberger Prinect WMS (Heidelberg).
Doing that a job with the two parts “content” and “cover” is automatically created. Figure 11 also shows
that the customer details, the binding intent and the number of copies are already set.

Figure 11: Prinect reads XJDF Resource “Contact”

451

One can observe in figure 12 that the printing substrate and the number of pages of the product part
content has been recognized. The same applies for the cover.

Figure 12: Prinect reads XJDF Product Part “Content”

4. DISCUSSION

The specifications concerning the metadata used here are draft versions only (Meissner, 2018;
ISO/DIS 21812-1) and thus subject to change. It is not advisable to start a product development based
on this still unstable ground.
The outcome of the conversion has also been imported into a WMS. The metadata has been
partly recognized.
The software  and  are not meant to become industry solutions. For that, the programming got to be
much more error tolerant and more general. Reading the metadata from PDF/VT, for example, need to
be implemented more universal and cannot assume a certain structure as it has been the case in our
project. Thus, software  and  are working fine in conjunction, but  will most likely fail if it reads
PDF/VT with CIP4 metadata that has been generated by some other program and some other library.
Moreover, we concentrated on a single product type, i.e. a booklet with cover and content. Even for this
example, we did not address every aspect – for example, neither the colour properties of the product nor
the actual formats are considered.

5. CONCLUSIONS

The feasibility of the interfaces is proven. The problem in practice will be the generation of the metadata.
There are several obvious scenarios that are right for this new approach like Web-to-print or forwarding
jobs to a subsidiary or partner of the PSP. It might become a bit more questionable, if the PB needs to fill
out a form, as it is the case with this prototype software. In this scenario, a steady and firm collaboration
between PB and PSP might be a necessary assumption for the start.

6. ACKNOWLEDGMENTS

I would like to thank PDFlib for providing me with a temporary license for their library.

7. REFERENCES

[1] Heidelberg, Prinect, Heidelberg,
URL: https://www.heidelberg.com/global/en/lifecycle/workflow/prinect_overview.jsp
(last request: 2018-07-18)

[2] International Organization for Standardization: ISO 16612-2:2010. “Graphic technology - Variable
data exchange - Part 2: Using PDF/X-4 and PDF/X-5 (PDF/VT-1 and PDF/VT-2)”, International
Organization for Standardization, 2010.

[3] International Organization for Standardization: ISO 16684-1:2012. “Graphic Technology – Extensible
Metadata Platform (XMP) specification”, International Organization for Standardization, 2012.

452

[4] International Organization for Standardization: ISO 32000-2:2017. “Document Management -
Portable Document Format - Part 2: PDF 2.0”, International Organization for Standardization, 2017.

[5] International Organization for Standardization: ISO/DIS 21812-1. “Graphic technology — Digital data
exchange — Print product metadata for PDF files — Part 1: Architecture and core requirements for
metadata”, International Organization for Standardization, Draft 2018.

[6] Jetbrains, IntelliJIDEA, Jetbrains, URL: https://www.jetbrains.com/idea/ (last request: 2018-07-19)
[7] Meissner, S.: “ICS-IntentMetadata.PDF.1,5”, confluence.cip4,

URL: https://confluence.cip4.org/display/PUB/XJDF, (last request: 2018-05-13)
[8] Meissner, S.: “XJDF Specification 2.0 – final”, confluence.cip4,

URL: https://confluence.cip4.org/display/PUB/XJDF (last request: 2018-07-09)
[9] Meissner, S.: “Print Talk”, confluence.cip4, URL: https://confluence.cip4.org/display/PUB/PrintTalk

(last request: 2018-05-13)
[10] Meissner, S.: “JDF Specification 1.6-final”, confluence.cip4,

URL: https://confluence.cip4.org/display/PUB/XJDF (last request: 2018-05-16)
[11] Prosi, R.: “ICS — Common Metadata for Document Production Workflows”, confluence.cip4,

URL: https://confluence.cip4.org/display/PUB/ICS+Documents (last request: 2018-05-13)
[12] Wikipedia, CSV (Dateiformat), Wikipedia, URL: https://de.wikipedia.org/wiki/CSV_(Dateiformat)

(last request: 2018-05-25)

© 2018 Authors. Published by the University of Novi Sad, Faculty of Technical Sciences, Department of
Graphic Engineering and Design. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution license 3.0 Serbia
(http://creativecommons.org/licenses/by/3.0/rs/).

453

https://confluence.cip4.org/display/PUB/XJDF
https://confluence.cip4.org/display/PUB/XJDF

