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Abstract: Traditional image compression algorithms treat all image regions equally, regardless of their 
content, often resulting in reconstructed images that do not correlate well with human perception. 
Content-aware compression, on the other hand, prioritizes image regions that are more relevant to the 
interpretation of an image and encodes them at a higher bitrate, i.e. without loss or with less loss, than 
the rest of the image. Our paper explores the multi-structure region of interest (MS-ROI) model, a 
convolutional neural network, which enables the localization of multiple regions of interest (ROIs) in an 
image. The localization is expressed as a corresponding saliency map, which identifies the relevance of 
individual image regions and provides a saliency value for each pixel of the given image. This information 
is then used to guide the compression. The saliency values are discretized into multiple levels and more 
important levels are encoded with a higher quality factor Q than the less important ones, allowing for 
most of the reduction in image resolution to occur in non-salient image regions. Because the generated 
saliency maps produce soft boundaries between salient and non-salient image regions, smooth transitions 
between these regions are achieved. The obtained image is then encoded further using the standard JPEG 
algorithm with a uniform Q factor, resulting in the final image of the standard JPEG format. Our model 
was trained on the Caltech-101 image dataset and its performance was tested on two other image 
datasets. Presented are the obtained saliency maps for several images, as well as the results of content-
aware compression, which are compared to the standard JPEG compression at different Q factors. For an 
objective comparison and evaluation of the quality of the obtained images, various standard quality 
metrics were used, i.e. mean squared error (MSE), peak signal-to-noise ratio (PSNR), structural similarity 
index (SSIM) and multi-scale structural similarity index (MS-SSIM). 
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1. INTRODUCTION 

The primary objective of image compression is to reduce the amount of bits that is required for the image 
data to be stored or transmitted. Traditional lossy image compression algorithms, such as the widely 
adopted JPEG standard, take advantage of repetitive, redundant or imperceptible image data, and of the 
limitations of the human visual system, to encode the data more efficiently and reduce the file size. While 
the goal is to preserve the perceptual quality of an image, the approximation of the represented content 
results in the development of some unavoidable visual artifacts, which worsen the interpretability of the 
reconstructed images. Blocking effects, ringing artifacts and blurring, which are most characteristic for 
JPEG compression, appear as a consequence of the discontinuities between adjacent 8x8 pixel blocks and 
the elimination of high frequencies. Because the algorithm treats all image regions equally, regardless of 
their content, the compression artifacts are equally visible in the image background as well as in 
foreground objects. In order to minimize the visibility of these unwanted artifacts in the decoded images, 
numerous approaches that focus on obtaining a more accurate reconstruction of the original signal have 
been proposed (Dong et al, 2015; Dong et al, 2016a; Tao et al, 2017). 
Content-aware compression methods, on the other hand, encode the content in a way that corresponds 
more to the manner in which the human eye interprets the image. Because the degree of human interest 
in different image regions varies according to what we perceive as more relevant for understanding the 
image, content-aware compression prioritizes the more important image regions, i.e. the regions of 
interest (ROIs), and enables them to be preserved with less loss than the rest of the image.  
Before the encoding process can be accomplished, a saliency map, corresponding to the image content, 
needs to be obtained. A saliency map partitions the image into several categories, depending on the 
image regions they contain, and therefore serves as the means for quantifying the relevance of individual 
regions. The provided contextual information about the image is then integrated into a compression 
scheme. Because the selected, more important image regions, are encoded at a higher bitrate than the 
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image background, the compression artifacts in the ROIs of the reconstructed images are less noticeable 
than those in the background.  

1.1 Saliency maps  

Saliency maps can be obtained using different techniques. In recent years convolutional neural networks 
(CNNs) have been used successfully in a variety of image processing and computer vision tasks and have 
enabled a more accurate localization, detection and segmentation of objects and ROIs in images. For the 
purpose of obtaining saliency maps in order to guide the image compression, these approaches are 
inappropriate due to the following drawbacks: 

i) The use of typical methods aimed at object localization results in an object's position being 
represented within a rectangular window, which does not capture the object's silhouette.  
ii) The image segmentation techniques subdivide an image into its constituent regions by classifying 
each pixel as either a part of a foreground object or a part of the background. The resulting saliency 
maps produce sharp boundaries between different regions, which is not needed for the purpose of 
image compression. 

Saliency maps can also be based on visual saliency models. While these models accurately capture the 
fixations of the human eye, the fixations themselves do not encompass the object's edges, which 
prevents the models from capturing the complete extent of the object. As shown in (Yu et al, 2009), the 
use of saliency maps based on human fixations for the task of image compression results in blurred edges 
and a soft focus of the objects in the obtained image.  

1.2 The MS-ROI model  

The multi-structure region of interest (MS-ROI) model, proposed in (Prakash et al, 2017), is a CNN model 
that enables the localization of multiple ROIs. The architecture of the model consists of convolutional 
layers, which are followed by a nonlinear activation function and a max-pooling operation. Fully 
connected layers, typically added on top of the traditional CNN with the aim of producing the predicted 
categorical output, are removed and replaced with a GAP layer that applies a global average pooling. The 
GAP operation calculates the spatial average of each feature map (a three-dimensional tensor) from the 
convolutional layer preceding the GAP layer, reducing each feature map to a single value. The resulting 
vector is fed directly into the final, Softmax layer, which outputs the model's prediction. The weights 
connecting the GAP layer to the output layer encode the contribution of each feature map to the 
predicted class – the bigger the contribution of a specific detected visual pattern, the more weight it is 
given. A saliency map is obtained by mapping the weights of the final layer back to the last convolutional 
layer and calculating a weighted sum of the feature maps. Rather than picking only the most probable 
class (the highest activation), the activations are sorted from the index of the element with the lowest 
value to the index of the element with the highest value and a weighted sum of the five highest-scoring 
classes is taken, while the less probable classes are discarded. By applying a colourmap consisting of a 
range of cold and warm colours over the obtained greyscale saliency map, the final localization is 
expressed as a heatmap, which highlights the discriminative ROIs specific to the predicted classes. The 
most important image regions are represented with the red colour, whereas the least important image 
regions are represented with the dark blue colour.  
The two significant modifications made to the architecture of a traditional deep convolutional neural 
network - the removal of the fully connected layers and the inclusion of the GAP layer – in addition to 
choosing the five most probable classes instead of only one, enable the three important advantages of 
the MS-ROI model in comparison with the approaches of obtaining saliency maps, which are based on 
localization, segmentation or human fixation.  
Firstly, the removal of fully connected layers allows for the model to retain the ability of convolutional 
layers to behave not only as feature extractors but also as object detectors, despite being trained  
only on image-level labels with no additional annotation provided (e.g. bounding box supervision or 
 pixel annotation).  
Secondly, an addition of the GAP layer provides the means for the network to determine the full extent  
of the object. If instead of the GAP operation the global max-pooling (GMP) was applied, it would  
force the model to discard all of the values except the highest one, enabling the model to identify  
only one discriminative part of the object in an image, but preventing it from highlighting the whole 
object. The employment of the GMP would therefore present a drawback similar to the usage of a visual 
saliency model. 
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Lastly, by using a weighted sum of the top five predictions instead of only the highest scoring class, the 
obtained heatmap enables the detection of multiple regions of interest, which can include objects 
belonging to different classes. The localization of multiple ROIs and the production of soft boundaries 
between different image regions create coherent heatmaps and enable smooth transitions from salient 
to non-salient regions in the reconstructed images.  

1.3 The compression process  

The JPEG compression algorithm treats all areas of the image with equal importance, using the same 
quality factor Q to encode them evenly. The heatmaps obtained by the MS-ROI model, on the other hand, 
enable a content-aware encoding with a variable factor Q. The generated heatmap provides a saliency 
value, located in the interval between 0 and 1, for each pixel of the given image. These values are  
then discretized into a range of levels, varying in their relevance. Pixels with a saliency value of 1  
are categorized as the most important, while pixels with a saliency value of 0 are categorized as the  
least important. Finally, a range of JPEG quality levels from Ql to Qh, corresponding to the levels of 
importance, is chosen.  
The compression process involves two encoding passes. In the first encoding pass, the less important 
levels, indicated by the cold colours on the heatmap, are encoded with lower Q factors (meaning a higher 
compression), whereas the more important levels, indicated by the warm colours on the heatmap, are 
encoded with higher Q factors (meaning a lower compression). The areas encoded at higher Q factors are 
therefore capable of preserving more information about the original image.  
The second encoding pass employs a uniform Q factor, Qfinal, to encode all regions equally. Because the 
final image is encoded using the standard JPEG encoder, decoding the image can be done by the standard 
JPEG decoder. 

2. METHODS 

The code for the MS-ROI model and the image compression was written in Python 3. The processing of 
the images was performed using the CUDA software on the Nvidia GPU with 8 GB of memory. 
The model was trained on the Caltech-101 image dataset (Fei-Fei et al, 2006), which consists of 9144 
monochromatic, greyscale and RGB images (representing the independent variables) belonging to 102 
classes (representing the dependent variables). The last 15 images of each class were used for the 
validation set, whereas the remaining images were used for the training set. The training set and the 
validation set initially contained 7614 images (83.3%) and 1530 (16.7%) respectively, but during the 
training phase the size of the trainset was increased using real-time image augmentation. The original 
images were rotated up to 30 degrees, centrally scaled up to 30% and flipped horizontally and vertically. 
Every iteration produced a number of transformed images from each class that was approximately equal 
to the number of images that the class originally contained. Since the transformations were perfomed 
randomly, each iteration included different variations of the input images.  
The implementation of the model was based on the pretrained VGG16 model (Simonyan et al, 2014), the 
architecture of which was modified by removing the fully connected layers at the top of the model and 
replacing them with three additional convolutional layers and a GAP layer. The 1000 nodes comprising 
the Softmax layer of the standard VGG16 model were replaced with 102 nodes, corresponding to 102 
classes included in the Caltech-101 image dataset. The input images were resized to a fixed input size of 
224x224 pixels. 3x3 pixel convolution filters with a stride of 1 and 2x2 pixel pooling windows with a stride 
of 2 were used for convolution and max-pooling. In total, the neural network consisted of 23 layers – 16 
convolutional layers, each followed by a ReLU activation function, 5 max-pooling layers, following each of 
the 5 blocks of convolutional layers, a GAP layer and a final, Softmax layer. The combination of removing 
the fully connected layers, thereby decreasing the number of parameters, and adding a GAP layer, which 
in itself serves as a regularizer, reduced the risk of overfitting the model to the training data largely 
enough that the dropout was not needed.  
Three different methods were used for weight initialization. In the unmodified layers of the VGG16 model 
the pretrained weights were initialized to the constant numbers. In the convolutional layers, added on 
top of the VGG16 model, the weights were initialized from the truncated Gaussian distribution using the 
standard deviation of 0.1, whereas the weights in the GAP layer were initialized using the Gaussian 
distribution. The reason for using the truncated normal distribution in each of the three additional 
convolutional layers was to reduce the risk of neuron saturation.  
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The cost was calculated using the cross entropy function and minimized using the Adam optimization 
algorithm with a learning rate of 0.0001 and the default values of the parameters beta 1, beta 2 and 
epsilon. The learning process included 100 iterations using a batch of 32 images.   
In order for the model to be able to identify multiple ROIs, the matrix of sorted activations for each input 
image needed to be obtained. Instead of the more commonly applied argmax method, which finds the 
index of the element with the maximum activation, the argsort method was used to obtain and sort all 
the activations. The five highest scoring activations were picked for every input image and their weighted 
sum was taken. Matplotlib's Jet colourmap was used to generate the colour scheme.  
The performance of the content-aware compression method based on the MS-ROI model was assessed 
on JPEG images from the Salicon dataset (Yu et al, 2015) and on uncompressed BMP images from the 
General-100 dataset (Dong et al, 2016b). The results of the MS-ROI based compression were compared to 
the standard JPEG compression at Q factors of 50, 30 and 70. For an objective comparison and evaluation 
of the quality of the obtained images, the mean squared error (MSE), peak signal-to-noise ratio (PSNR), 
structural similarity index (SSIM) and multi-scale structural similarity index (MS-SSIM) were used. Higher 
PSNR (measured in dB), SSIM and MS-SSIM values refer to a higher image quality, wherease a higher MSE 
indicates a bigger error in the reconstructed image. For all of the experiments, the chosen Q values for 
the first encoding pass of the MS-ROI compression method ranged from Ql = 30 to Qh = 70. The Qfinal 
factor of the second encoding pass depended on the selected Q factor of the JPEG compression and the 
file size of the original image. When comparing the MS-ROI compression to the standard JPEG 
compression at Q = 50, the average Qfinal was 57, at Q = 30 the average Qfinal was 31, and at Q = 70 the 
average Qfinal was 73. The maximum difference between the file sizes of the standard JPEG images and 
the images obtained using the MS-ROI model was 1%. 

3. RESULTS 

3.1 The accuracy and reproducibility of saliency maps  

Because the quality of the final image is heavily dependent on the accuracy and reproducibility of the 
obtained heatmaps, the model was evaluated on input images representing different content and 
containing different semantic objects. Since the model's prediction (the matrix of activations) for the 
same input image is slightly different every time the image is passed through the network, different 
variations of the heatmaps are generated. To show that the model's prediction for the same input image 
varies only to some degree and to estimate the robustness of the model, as well as the reproducibility of 
the obtained heatmaps, some of the test images were passed through the network five times in order to 
obtain five different variations of the heatmap (shown in Figures 1 – 4).  
As seen in Figures 1 and 2, the model is able to accurately identify one or a few clearly distinguishable 
salient image regions. Consequently, the similarity between the produced heatmaps is relatively high. In 
cases where the identification of the ROIs and the isolation of foreground objects from the background 
are more difficult (Figure 3) or where the input images do not contain any salient regions at all (Figure 4), 
the precision and the reproducibility of the generated heatmaps are lower.  

 

Figure 1: Example of an input image with one salient region 

462



 

Figure 2: Example of an input image with two salient regions 

 

Figure 3: Example of an input image with several salient regions 

 

Figure 4: Example of an input image without salient regions 

3.2 Objective evaluation of the quality of the reconstructed images 

Table 1 presents the results of calculated quality metrics for the set of five images that contain distinct 
salient areas (Figure 5). The compression method based on the MS-ROI model outperforms the standard 
JPEG compression at Q = 50 for all five images, even though the file sizes of images that were compressed 
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using the MS-ROI method are all slightly smaller than those compressed using the JPEG algorithm. The 
most significant gain in PSNR, 1.61 dB, is achieved in the case of image 2 (snowboarder), the biggest 
improvement in SSIM, 0.0107, in the case of image 1 (bird), and the biggest gain in MS-SSIM, 0.0044 in 
the case of image 5 (elephant).  

 

Figure 5: Five examples of images from the Salicon dataset and of their corresponding heatmaps 

Table 1: Results of calculated quality metrics when comparing the MS-ROI compression to JPEG at Q = 50 – for the 
images with salient regions 

  MSE PSNR (dB) SSIM MS-SSIM File size (B) 

  Image 1 (bird) 

JPEG 35.134 32.674 0.9616 0.9925 47436 

MS-ROI 26.932 33.828 0.9723 0.9947 47014 

  Image 2 (snowboarder) 

JPEG 21.099 34.888 0.9590 0.9878 22171 

MS-ROI 14.571 36.496 0.9669 0.9886 21951 

  Image 3 (truck) 

JPEG 114.50 27.543 0.9201 0.9846 56867 

MS-ROI 80.481 29.074 0.9290 0.9878 56362 

  Image 4 (cathedral) 

JPEG 46.729 31.435 0.9233 0.9848 41895 

MS-ROI 32.479 33.015 0.9261 0.9864 41669 

  Image 5 (elephant) 

JPEG 52.656 30.916 0.9230 0.9824 42718 

MS-ROI 37.492 32.391 0.9336 0.9868 42301 

The results of calculated quality metrics for the set of five images, which do not contain any salient areas 
or where their identification is more ambiguous (Figure 6), are displayed in Table 2. Because content-
aware compression is intended for encoding images that depict some salient objects, the model's 
predictions were expected to be much less accurate in cases where the input images contained patterns, 
shapes or textures. Nonetheless, the PSNR values of the MS-ROI compression method turned out to be 
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higher than those of the JPEG compression for all images, with the exception of the last one (corals). 
Unlike the PSNR value, the SSIM and MS-SSIM indexes were improved only for image 1 (stone wall) and 
image 3 (leaves). 
It is worth mentioning that, even in the cases where any of the PSNR, SSIM or MS-SSIM values of the MS-
ROI compression were higher than for the JPEG compression, the improvement of the MS-ROI method 
over the JPEG method is much less significant than in the case of the images that contain clearly 
identifiable salient objects. 

 

Figure 6: Five examples of images from the General-100 dataset and of their corresponding heatmaps 

Table 2: Results of calculated quality metrics when comparing the MS-ROI compression to JPEG at Q = 50 – for the 
images without salient regions 

  MSE PSNR (dB) SSIM MS-SSIM File size (B) 

  Image 1 (stone wall) 

JPEG 94.637 28.370 0.9639 0.9962 14331 

MS-ROI 94.425 28.380 0.9644 0.9963 14457 

  Image 2 (tiger stripes) 

JPEG 96.061 28.305 0.8649 0.9812 24809 

MS-ROI 94.273 28.387 0.8623 0.9808 24805 

  Image 3 (leaves) 

JPEG 25.258 34.107 0.9516 0.9897 23126 

MS-ROI 25.201 34.117 0.9518 0.9899 23261 

  Image 4 (pebbles) 

JPEG 86.153 28.778 0.8672 0.9828 30722 

MS-ROI 84.485 28.863 0.8657 0.9827 31003 

  Image 5 (corals) 

JPEG 48.866 31.241 0.9584 0.9915 68008 

MS-ROI 55.054 30.723 0.9571 0.9908 68278 

The model was also evaluated on 200 randomly chosen images from the Salicon dataset, which contains a 
total of 20000 images, and on 50 randomly chosen images from the General-100 dataset, which contains 
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a total of 100 images. The average PSNR and SSIM values for the selected images from the Salicon and 
General-100 dataset are shown in Table 3 and Table 4, respectively.  

Table 3: PSNR and SSIM of 200 images from the Salicon dataset 

  PSNR SSIM 

JPEG (50) 32.670 0.9658 

MS-ROI 33.763 0.9735 

JPEG (30) 29.521 0.8991 

MS-ROI 30.134 0.9021 

JPEG (70) 43.445 0.9910 

MS-ROI 44.416 0.9958 

Table 4: PSNR and SSIM of 50 images from the General-100 dataset 

  PSNR SSIM 

JPEG (50)  32.827        0.9501 

MS-ROI  33.184 0.9537  

JPEG (30)  30.637 0.9375  

MS-ROI  30.641 0.9379  

JPEG (70)  34.902 0.9741  

MS-ROI   34.968  0.9759  

Results show that the MS-ROI compression method performs better than the standard JPEG 
compression, since the former is characterized by a higher PSNR and a better visual quality of the 
obtained images. As seen in Table 3, compression based on the MS-ROI model achieves an average gain 
of 1.09 dB in PSNR and a 0.0077 gain in SSIM against the standard JPEG compression at Q = 50, and an 
average gain of 0.97 dB in PSNR and 0.0048 in SSIM at Q = 70. Meanwhile, the improvement of the  
MS-ROI compression, when compared to the JPEG compression at Q = 30, is not as substantial,  
though the MS-ROI method still performs better and on average improves the PSNR by 0.61 dB and the 
SSIM by 0.0030.  
Similarly, the MS-ROI based compression generates better results in comparison with the standard JPEG 
compression at Q = 50 for the images from the General-100 dataset. On average, the MS-ROI 
compression gains 0.36 dB in PSNR and 0.0036 in SSIM. However, when compared to the JPEG 
compression at Q = 30 and Q = 70, the results of the MS-ROI compression are much less prominent. 
When compared to the JPEG compression at Q = 70, on average, the MS-ROI compression improves the 
PSNR by 0.07 dB and the SSIM by 0.0018, while, when compared to the JPEG compression at Q = 30, the 
average gain in PSNR is only 0.0040 dB and only 0.0004 in SSIM. 
Overall, the MS-ROI model performs better on images from the Salicon dataset. This can be explained by 
the fact that the General-100 dataset contains more images depicting textures and patterns compared to 
the Salicon dataset, which consists mostly of images of natural indoor and outdoor scenery with various 
salient regions. Furthermore, the General-100 dataset contains images of smaller dimensions than the 
Salicon dataset, which is therefore better suited for a content-aware compression task.  
The obtained results were interpreted using a one-way analysis of variance (Anova). The purpose of the 
test was to determine whether the MS-ROI compression and the JPEG compression are actually different 
in the measured characteristics. Since the improvement of the MS-ROI compression over the JPEG 
compression was more significant for the images from the Salicon dataset than for the images from the 
General-100 dataset, Anova was performed for the former dataset. An improvement of the MS-ROI 
model over the standard JPEG compression is statistically significant if the p-value is less than the 
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significance level of 0.05. The test yielded p-values that were lower than the significance level, for both 
the PSNR and SSIM values, when comparing the MS-ROI model to the JPEG compression at Q factors of 
30, 50 and 70, thereby rejecting the null hypothesis in favour of the MS-ROI model. 

4. CONCLUSIONS 

This paper explores the content-aware compression based on saliency maps obtained using a 
convolutional neural network - the MS-ROI model. We showed that by varying the quantization of 
compression, the MS-ROI based encoding is capable of achieving a better visual quality of the 
reconstructed images compared to the standard JPEG compression. Since the accuracy of the obtained 
heatmaps is highly dependent on the content of the input image, the performance of the MS-ROI 
compression is especially superior when images with clear semantic regions are used. Because the model 
allows for the detection of multiple salient image regions and produces soft boundaries between them, 
the transitions from regions encoded at higher and lower bitrates are smooth. Further experimentation 
with the MS-ROI model based on different CNN architectures is required to better understand the effect 
of the model implementation on the generated saliency maps and the resulting quality of the content-
aware compression.   
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