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Abstract: We live in a digital media-overloaded world. An enormous number of images, sound and video 
files are continuously being created and either transmitted over the internet or stored on hard drives or 
portable storage devices. During their transmission or storage, however, such digital files are almost 
without an exception subjected to a process of discarding most of their original information, since e.g. fast 
opening of a web site image or a small audio file size are today of utmost importance. Loss in redundant 
or imperceptible information is therefore inevitable and incorporated in lossy compression algorithms such 
as JPEG, MPEG or MP3, but to record raw video or audio data only to be, in large part, soon discarded 
during the process of sending it to a receiver is obviously not an optimum approach. Compressed sensing 
is a signal processing technique that provides one solution to the above problem. Rather than performing 
acquisition followed by compression of a signal, it combines both steps in a single sensing – or sampling – 
operation. In other words, compressed sensing allows acquiring signals while taking only a few samples. 
One of the underlying assumptions of the signal is that it is sparse, i.e. it should be possible to represent  
it with a matrix, consisting of a large number of zero – or close to zero – coefficients. Images, when 
represented in a non-spatial domain, such as discrete cosine- or wavelet-domain, often comply with  
such a requirement. 

Theory behind the compressed sensing will be presented briefly together with several examples of 
successful implementation of this method in the field of signal – mainly image – processing. 
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1. INTRODUCTION 

The number of digital media files, such as still images, sound and video clips that are created every day is 
astonishing. For example, in 2017 every minute more than 400 hours of video were uploaded to YouTube, 
and 136,000 and 46,740 photos were uploaded on Facebook and Instagram, respectively (Schultz, 2017). 
However, the vast majority of this data is discarded during the process of its compression in order to 
secure its fast network transmission or a compact file storage on hard drives or portable storage devices. 
Loss in redundant or imperceptible information is therefore inevitable and incorporated in widely used 
lossy compression algorithms such as JPEG, MPEG or MP3. This traditional approach consisting of a raw 
data acquisition followed by its compression therefore seems wasteful; one can argue whether it would 
be possible to directly acquire just the useful part of a signal? 

1.1 Compressed sensing 

Compressed sensing (CS), also known as compressive sensing/sampling and sparse sampling, is a signal 
processing technique developed in years 2004-2006 (Candes et al, 2006) that attempts to solve this 
problem. In the conventional signal acquisition and compression scheme (Figure 1 left), a signal consisting 
of N samples (e.g. pixels in an image) is compressed producing a much smaller number of K elements (e.g. 
discrete Fourier transform (DFT), cosine transform (DCT) or wavelet transform (DWT) coefficients), which 
are transmitted from the sender to the receiver where a decompression – reconstruction – takes place, 
resulting in an approximation of the original signal, with a hopefully no significant perceptual difference 
to the original. In the CS workflow (Figure 1 right), on the other hand, signal acquisition and compression 
operations are merged – or rather substituted by – a single sensing (sampling) step. Here N samples are 
replaced by M measurements, which are then, similar to the conventional workflow, sent over the 
network and used to perform the reconstruction of the signal. Note that K < M << N. It can be shown 
(Candes et al., 2006) that the reconstruction is perfect (exact) as long as M = O(K·log(N/K)); see Figure 2. 
Two important prerequisites for CS to work are sparsity and incoherence and are discussed below. 
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 Figure 1: Conventional signal acquisition and compression scheme (left) and CS workflow (right) (Mancera, 2008). 
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Figure 2: Original 1D signal has 5 non-zero values (K = 5). As the number of random measurements M decreases  
(30  20  10), signal reconstruction deteriorates and becomes suboptimal when M < 20. This is in agreement with 

the formula M = O(K·log(N/K)), since the computed value for M is 19.68. 

1.2 Signal reconstruction 

In principle, signal reconstruction is based on the idea of finding a solution to un underdetermined linear 
system y = Φx (Figure 3 left) (Milliarde, 2016), where for the CS purposes y and x represent measurement 
and signal vectors, respectively, while Φ is a sampling/sensing matrix, also known as a dictionary. Such a 
system is characterized by having fewer equations than unknowns – M < N – and generally has an infinite 
number of solutions. However, by imposing certain constraints to the system, the CS framework allows 
obtaining one particular solution. One such constraint is that the signal x is K-sparse, i.e., it must be 
possible to represent it with a vector, consisting of a large number of zero – or close to zero – coefficients 
and only K non-zero values. Digital images, when represented in a non-spatial, i.e. transform domain, 
such as discrete cosine- or wavelet-domain, often comply with such a requirement. If this is the case, the 
scheme shown in Figure 3 (right) applies. Here Ψ denotes a representation matrix corresponding to – 
when the signal is an image – DFT, DWT or DCT matrix coefficients. Φ is, as mentioned above, a dictionary 
consisting of randomly distributed values or, less often, of predetermined sequences, such as pseudo-
random codes, binary codes, noiselets, etc. The second CS prerequisite is that the two orthonormal bases 
Φ and Ψ are incoherent, i.e. poorly correlated to each other. 

   

Figure 3: A general underdetermined linear system of equations y = Φx having an infinite number of solutions (left) 
and a CS scheme y = ΦΨa where it is possible to obtain â using numerical optimization routines (right). 

From y = ΦΨa one can recover a, i.e. compute â, by solving Eq. 1: 

       (1) 
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Since this is a computationally complex combinatorial (NP-hard) problem, various approximations using 
rather involved numerical non-linear optimization algorithms have been implemented (Adcock, 2015). 
Going into these techniques is beyond the scope of this introductory paper. One of the widely adopted 
approaches is the minimization of L1-norm (known as Basis pursuit), which leads to the sparsest solution. 
Vector â obtained through this procedure has to be transformed back into the spatial domain, to obtain 
the conventional image representation. 

2. RESULTS AND DISCUSSION 

2.1 1D signal reconstruction 

First, let's take a look at how we can reconstruct a 1D signal of length N = 256, such as a sound wave 
(Figure 4a) by means of CS. Unlike in Figure 2, the signal of interest is now in the frequency – DFT – 
domain (Figure 4b). It has six peaks, corresponding to the three frequencies (K = 3) contained in the 
original, time domain, signal: 31, 98 and 122. This is due to the fact that each real-valued sinusoid is 
equivalent to two complex sinusoids of frequency f and –f and consequently has two peaks in the 
frequency domain. By performing 64 random measurements M (Figure 4c) it is possible to recover the 
signal in the frequency domain (Figure 4d) and – via inverse DFT – in the time domain (Figure 4e) 
perfectly. When the number of non-zero elements in the sparse representation of the same signal is 
raised to five (K = 5; frequencies: 21, 31, 39, 98, 122), however, the reconstruction with  
64 measurements is no longer satisfactory (Figure 5) and M has to be increased as well to secure a 
perfect recovery. 
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Figure 4: Perfect reconstruction of a 1D signal with N = 256, M = 64, K = 3. 
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Figure 5: Approximate reconstruction of a 1D signal with N = 256, M = 64, K = 5. 

2.2 2D signal reconstruction 

The procedure for reconstructing a 2D spatial domain signal, such as a digital photograph, is in principle 
similar to the recovery of a 1D time domain signal shown above and is demonstrated here using a 
MATLAB code (Gibson, 2013) and a well known cameraman test image (Figure 6). For the sake of 
simplicity it is assumed that the image is sparse – strictly speaking, compressible – in the DCT domain (Ψ is 
a DCT matrix); note that in general, it is more likely for a DWT-, rather than a DCT-, representation of a 
real-scene image that the assumption of sparsity is met. Dictionary Φ is a matrix of normally distributed 
random measurements. Due to certain computational issues, instead of reconstructing the whole image, 
only the two 50 x 50 px regions, i.e. subimages, were processed (N = 2500). The number of 
measurements M was N/2, N/4 and N/6, respectively. For obtaining â, two approaches were adopted: L1-
norm minimization (Basis pursuit; BP) and L2-norm minimization (Least squares solution; LS). Results are 
displayed in Figure 6. 
It is evident that the Basis pursuit algorithm outperforms the Least squares approach by a large margin. 
Contrary to the latter one where even with M = N/2 = 1250 the reconstructed image is extremely noisy 
and of a poor quality, the application of the former one leads to an acceptable reconstruction of the 
image regions – especially where lower frequencies dominate, such as in the subimage displaying the 
man’s coat – even with M = N/4 = 625. Of course, when the number of measurements M decreases too 
much, it becomes unlikely that the K-sparse signal will be recovered with a high precision. 
With an additional mathematical effort it is possible to improve CS image reconstruction results even 
further. By implementing a more sophisticated numerical optimization algorithm OWL-QN (Galen et al, 
2003) in Python, the author (Pyrunner, 2016) was able to quite successfully reconstruct the 1600 x 1200 
px Escher-Wyss’ image Waterfall by randomly taking only 10% of the samples (= measurements); see 
Figure 7 left. The image is recognizable even when starting from as little as 1% of the available data 
(Figure 7 right).  
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Figure 6: Image reconstruction results using minimization of L1-norm and L2-norm with N = 2500 and three different M 
values: N/2, N/4 and N/6. 

      

Figure 7: Image reconstruction results with advanced mathematical optimization: recovery from 10% (left) and 1% 
(right) of the original image data (Pyrunner, 2016). 

As discussed above, one of the strengths of CS is that it allows acquiring signal a while taking only a few 
measurements y – see Figure 3b. This is especially beneficial and applicable in imaging techniques such as 
Magnetic resonance imaging (MRI). MRI uses magnetic fields to excite hydrogen atoms in the patient’s 
body, resulting – after modelling – in measurements of the DFT of the image. Since the number of 
measurements is roughly proportional to the scan duration, longer scans are unpleasant for the patient, 
more prone to motion artifacts and consequently virtually impossible for certain moving body parts, e.g. 
lungs (Adcock, 2015). It is therefore highly desirable that the number of measurements – i.e. the scanning 
time – is as low as possible. Figure 8 shows an early example of a CS reconstruction (Mancera, 2008). The 
recovered image is clearly sharper and has less artifacts compared to the result obtained using the 
alternative – back-projection reconstruction – algorithm (Wikipedia, 2018). 
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Figure 8: Magnetic resonance imaging – reconstruction results using backprojection- and CS approach. 

3. CONCLUSIONS 

CS is a signal processing technique that uses a sparse signal, which can be sampled at a rate less than the 
Nyquist-Shannon sampling rate, in order to reconstruct the signal via a constrained optimization method, 
such as L1-norm. It has during the last ten years developed into a rich research area of itself spanning a 
wide variety of applications, such as photography, computer tomography, transmission electron 
microscopy, radio interferometry, and many others. Developing new applications as well as new recovery 
algorithms remains an active field of research. 
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