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AAbstract: The colour of an observed object can be described in many different manners, and the 
description by its reflectance provides the unambiguous colour representation. The reflectance description 
can be acquired by expensive multispectral cameras or, e.g., with time-sequential multispectral 
illumination. In our experiment, we propose that under the condition of constant and uniform illumination, 
the reflectance can be deduced from the object's RGB camera readouts, captured alongside the set of 
colour patches with known spectral characteristics. Translation from a colour description in RGB space 
into reflectance spectra, independent of illuminant and camera sensor characteristics, was performed with 
the help of an artificial neural network (ANN). In our study, the hypothesis was proposed that the ANN's 
performance of reflectance reconstruction can be enhanced by employing richer learning datasets using 
RGB input sets of two cameras instead of just one. Additional second camera information would be 
adequate only if the equivalent channels of cameras used are linearly independent. A quantitative 
measure of nonlinearity (QMoN), which is the metric primarily developed for use in chemistry, was 
employed to estimate the degree of nonlinearity. Additional attention was paid to ANN training, structure 
and learning set sizes. Two ANN training algorithms have been utilised, a faster GPU executed standard 
backpropagation and an order of magnitude slower CPU based, but with significantly better convergence 
Levenberg-Marquardt training algorithm. The number of neurons in the hidden ANN layer varied from the 
size of the input layer to a number greater than the number in the output layer. The complete set of colour 
samples was divided into five learning sets of different sizes, with the smaller sets being subsets of the 
larger ones. To assess performances of the resulting ANNs, mean squared error, the goodness of fit and 
colour differences calculated from original and reconstructed reflectances assuming several standard 
illuminations have been compared. A noticeable reflectance performance improvement has been found by 
using two cameras, even though the cameras' equivalent channels exerted only small degrees 
of nonlinearity. 
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In many areas, the description of colours using the camera's colour space, i.e. RGB is sufficient, but for a 
more accurate description, we use colour spaces such as XYZ or CIELAB. The former depends on both the 
characteristics of the capture device and the illumination, while the latter is independent of the device 
but still includes illumination. If we, for some reason, e.g. archiving a medieval facsimile or an artwork, 
want to achieve a colour description independent of the lighting at the time of capture, colours should be 
described through the reflectance spectra, for which several different image capture strategies have been 
developed. Multispectral cameras, which describe the image with more than three frequency bands, and 
hyperspectral cameras, which describe the image with a large number of narrow frequency bands, are 
expensive, and by increasing the spatial and frequency resolution, the temporal resolution can be 
compromised (Cucci et al., 2011). Due to the affordability of consumer cameras, their high image 
resolution and capture speed, the possibility of converting an RGB image, which varies from camera to 
camera, into a reflectance spectrum is becoming more and more intriguing. Such methods range from 
purely mathematical models that incorporate knowledge of image capture conditions and limitations to 
learnable models that exploit the capabilities of artificial neural networks (ANNs). Some of the many 
methods of spectrum reconstruction from camera readings have already been mentioned in our previous 
work (Lazar, Javoršek & Hladnik, 2020), and some are described below. 
In (Imai & Berns, 1999), an alternative approach to capturing multispectral images via a combination of 
RGB digital camera and either absorption filters or multiple illuminations is described. Imaging 
spectroscopy through faster electronically tuneable filters in front of a monochrome camera to build an 
image cube of spectral layers is reviewed in (Gat, 2000). Tuneable filters in front of the camera enable 

,



narrow-band filtering, where the build of the image cube requires a time sequence of consecutive 
photos. In (Chi, Yoo & Ben-Ezra 2010), the multispectral image is obtained with the carefully selected set 
of filters placed in front of the illumination source and the unknown moderate indoor ambient light is 
cancelled out. Besides hyper/multi-spectral imaging using special equipment, other techniques are being 
developed. For application in spectrally-based rendering systems, the algorithm for converting RGB 
labelled object and texture colours to spectrally presented reflectances has been described in (Smits, 
1999). In a three-step algorithm proposed by (Jia et al., 2017), the spectrum has been accurately 
reconstructed from RGB values of photos taken in daylight. The first step is a nonlinear dimensionality 
reduction of the high dimensional spectra of natural scene images to a 3D embedding of spectra. Then, 
RGB values of observed spectra are calculated, considering the known lighting conditions and camera 
spectral response and training the ANN to connect the RGB values and 3D embedding of spectra. In the 
third step, conversion from 3D embedding to high dimensional spectra is done through a low to high 
dimensionality dictionary.  
Multispectral and hyperspectral images are helpful in many fields, e.g. in geology (Ninomiya & Fu, 2019), 
agriculture (Hassan-Esfahani et al., 2014), food industry (Benouis et al., 2021), healthcare (Wang et al., 
2022) and cultural heritage (Colantonio et al., 2018). Research in the field of multi- and hyperspectral 
image capture is useful and current, as well as, due to the affordability of high-resolution commercial 
cameras, also research that uses various techniques of converting RGB to multidimensional spectral 
image space. 
In most studies, at least some knowledge about the image capturing conditions, e.g. lighting conditions 
and/or sensory response, is required. The precise measurement of the illumination spectrum is not 
always feasible, and the manufacturer does not necessarily specify the camera spectral response. Instead 
of using absorption filters or alternating bandpass illumination, which requires additional technical 
expertise, we propose that an array of reference colour patches with known reflectance spectra be 
captured alongside the object of interest with one or more cameras. Thus, the relationship between RGB 
values and the reflectance spectra can be established through a subsequent software approach. In our 
previous work, the possibility and effectiveness of an ANN-based spectral reflectance reconstruction from 
a single camera RGB data has been studied. An open question remained whether the efficiency of 
reflection reconstruction could be enhanced if the RGB data from two cameras were available.  
There are many possibilities for using the data of the reflection spectrum of the observed object. 
Depending on the light reflection, the surface type is essential, where the reflection can be complete or 
diffuse. If the surface is uniformly coloured, the reflectance can be measured using a spectrophotometer. 
In the case of large colour variability, such as in works of art, its use is impractical or impossible. For our 
planned future use for archiving works of art in watercolour, pastel, chalk, crayon, or printing material on 
matte paper, we used non-glossy - matte samples in our experiment.

It has been shown (Hornik, 1991) that multilayer feedforward networks are, under very general 
conditions on the hidden unit activation function (continuous, bounded and nonconstant), universal 
approximators provided that sufficiently many hidden units are available. In recent years, the availability 
of graphics cards with high computing power and data throughput has fuelled the evolution of neural 
network architecture. Convolutional and deep NNs are used to analyse large-scale input data through 
compacting the input data, like images and natural language and absorbing a huge amount of complex 
knowledge (Ciresan et al.,  2011, Zhang & Wallace, 2015, Szegedy, Toshev & Erhan, 2013, Rolnick & 
Tegmark, 2017). Our research focuses on a relatively small learning set (hereafter LS) with a small number 
of inputs; thus, reducing input data dimensionality would not contribute to network efficiency. We built a 
three-layer ANN, where an input layer accepts R, G and B values of one or two cameras, a hidden layer 
harbours a variable number of neurons, and the output layer's exit values consist of a reconstructed 
reflectance vector containing spectral power distribution of visible light, with a 10 nm wavelength 
resolution from 380 to 730 nm. 
The generic architecture of utilised ANNs is shown in Figure 1, where xk,j are k-th inputs, which can be 
RGB readings of one or two (depicted) cameras (hereinafter 1RGB or 2RGB); bj

(L) and wj,i
(L) stand for biases 

and connection weights and yk,j are output layer neurons' output values, representing 36 spectral 
components of k-th reconstructed reflectance;  j is neuron index in (L)-th layer and i in (L-1)-th layer.  



Figure 1: Architecture of an ANN with a single hidden layer and a variable number of hidden neurons, for the 
reconstruction of reflectances from RGB

Having a LS of (1RGB/2RGB, reflectance spectrum) pairs from the reference set of patches, the training of 
the ANN is performed by a learning algorithm, adjusting connection weights and biases so that the 
network cost function -mean squared error (Eq. 1), is minimised. 

(1) 

Np is the number of patches, Nλ number of reflectance wavelengths, k is patch index and j wavelength 
index, rk,j is a j-th spectral component of k-th patch measured reflectance and yk,j j-th spectral component 
of k-th patch reconstructed reflectance. 
The software part of our experiment was programmed in Matlab, where the two ANN learning algorithms 
are set for the purpose of function approximation, namely "standard gradient descent based 
backpropagation" (hereafter BP) ANN training algorithm is high-speed due to the ability to run on GPU 
and another, Levenberg-Marquardt (hereafter LM) algorithm, which only supports computing on CPU, 
but is specially adapted to minimise the sum-of-squares error functions (Aldrich, 2002). As in our previous 
research, it shows again that the LM learning algorithm, with an increased number of hidden layer 
neurons, requires at least an order of magnitude more time but results in order of magnitude better 
learning convergence by means of epochs repetition and better ANN performance compared to BP. 
Functions embedded in the modelled ANN translate RGB readings into components of the reflectance 
spectrum. Each of the 36 embedded functions in our case translates the three input readings (a point in a 
3D space) into one spectral component. If we take two RGB readings that are not linearly dependent, 
triangulating these two points into one spectral value should give more accurate results and partially 
eliminate metamerism. Metamerism caused by the light source cannot be decreased or eliminated in this 
way. Suppose a part of the illuminant spectrum is missing. In that case, it prevents sensing the reflection 
of a missing part of the spectrum from the object. Whereas, if a light source with a smooth spectrum is 
used (e.g., sunlight or incandescent bulb) when the photo of an object and the reference array of patches 
is captured, their reflectance should convey its complete spectrum, which in the camera is transformed 
into RGB readouts. If cameras used in the experiment have a nonlinear relationship between equivalent 
colour channels, the observer (or camera) metamerism could be reduced. The integration defining the R, 
G and B values includes the product of illuminant spectrum I(λ), object/colour patch spectral reflectance 
S(λ) and camera spectral sensitivity function τ(λ), which is different for each channel of each 
camera (Eq. 2):  

(2) 

Here "cam." indicates camera (in our case, 1 or 2), "ch." represents colour channel (R, G or B) and "i" 
denotes colour index (e.g., colour 1, 2 … num. of colour patches). 
If one camera gives the same RGB outputs for two different samples, a metameric pair of samples is 
found, meaning that the integrals of equivalent channels of two samples give the same result (R1=R2, 
G1=G2 and B1=B2). If the second camera's equivalent channels are not linearly dependent on the first 
camera, the integrals for outputs of the second camera will likely give different results for the previously 
metameric pair of samples (R1≠R2 and/or G1≠G2 and/or B1≠B2). Because RGB values are 8-bit integers, too 



slight differences could still result in the same values. The greater the nonlinearity is between the 
equivalent channels, the more significant the possibility of different values for the previously metameric 
pair. We can conclude that the second camera can provide additional information. It is challenging to 
prove analytically; however, by expanding the ANN's LS with an algorithm that allows learning through a 
series of examples, an additional camera could allow for better ANN performance, which we hope to 
demonstrate through our experiment. 
As stated in the hypotheses below, we assume that the equivalent colour channels of the cameras used 
are linearly independent. If so, we believe the ANN performance will improve if the LS input data 
is doubled. 
Our hypotheses are as follows: 

1. Equivalent channels (RC1-RC2, GC1-GC2, BC1-BC2) of different cameras are most likely
linearly independent.

2. An ANN for reflectance reconstruction from RGB readings, trained with input data of two
different cameras, will perform better than an ANN trained with single-camera RGB data.

Our study aimed to explore the possibility of improving the recovery of reflectance spectra from 
trichromatic camera values by supervised learning of an ANN with a single hidden layer, modelled with 
Matlab Neural Network Toolbox. The ANN LS inputs are vectors of 3 or 6-dimensional RGB readings from 
one or two cameras, and outputs are higher dimensional vectors of reflectance spectra – readings of 
the spectrophotometer. 
The source of colourimetric data for our experiment was The Munsell Book of Color Matte Collection, 
with 44 sheets providing 1301 colour patches, varying chroma, hue and value. Forty sheets are divided 
into 2,5 steps Munsell hue circle (2,5, 5, 7,5, 10 for Red, YR, Yellow, GY, Green, BG, Blue, PB, Purple and 
RP). Four remaining sheets contain neutral colours - neutral and subtly hued greys. Reflectance spectra of 
patches were measured by spectrophotometer X-Rite i1Pro 2 at five points (on both diagonals, a quarter 
of the distance from each corner, and at the patch centre). Reflectances - vectors with 107 components 
for wavelengths from 376.66 to 730 nm with a step size of 3.33 nm were calculated as an average value 
of the five measurements with a maximum standard deviation of less than 0.4%.  
Because of the absorption characteristics of human-made and natural colourants, the sampling rate can 
be significantly decreased (Imai & Berns, 1999). Surface spectral reflectances of many organic and 
inorganic substances are characteristically smooth, low-pass functions of wavelength (Maloney, 1986). By 
observing reflectance spectra of all the available colour patches, which include many natural colours (soil, 
skin, foliage etc.), the smoothness has been confirmed without exception; therefore, the decrease in 
sampling rate is acceptable. Subsampling was made from 3.33 to 10 nm step, resulting in 36 reflectance 
spectral components in the range from 380 nm to 730 nm. 
The sheets with colour patches were photographed in a photo studio under constant lighting conditions. 
We used three cameras (Nikon D600, D700 and Panasonic GH-4) with fixed manual settings (Figure 2). A 
spectrophotometer measured the light source spectral power distribution at the sheet location, and a 
correlated colour temperature (CCT) of 3019° K was read out. Images were captured in RAW format and 
required conversion to 8-bit RGB. All images were processed equally - normalised using Adobe Lightroom 
software to the measured CCT, the tint was balanced to 0, and chromatic aberration, even though 
unnoticeable, was corrected with corresponding lens profiles. This process resulted in conversion to 
digital photos in AdobeRGB (1998) colour space. The RGB value of each patch was calculated as the 
median (rather than the mean) of the inner 50% of the squared patch area to avoid the influence of 
possible minor colour deviations. 

Figure 2: Photo studio setting 



The complete set of RGB-reflectance pairs included data of all 1301 Munsell Matte colour patches, with 
three camera sets of R, G and B values and 36 values for each reflectance vector. Before training the ANN 
models, the complete set was split into a training set and the remaining independent samples, for which 
additional measures of reflectance reconstruction performance were calculated. At the beginning of each 
ANN model training iteration, the LS was randomly split into training, validation and testing sets in a 
70:15:15 ratio. 
Due to the nature of ANN learning, where the algorithm tends to find a local instead of a global minimum 
of the cost function, for each model with selected cameras, a training set size and number of neurons in 
the hidden layer (3 to 48, in steps of 1), the search for optimal ANN parameters was repeated 41 times. In 
preliminary experiments with 21 ANN training repetitions with selected LS sizes, it was found that 
increasing the number of neurons in the hidden layer (hereafter HLN) above 48 does not improve the 
ANN performance noticeably or even worsens, while the calculations become very time-consuming. 
In this experiment, we wanted to increase the possibility of finding the best ANN models, so the number 
of repetitions was almost doubled. The odd number of 41 repetitions was chosen due to the calculations 
of some additional statistics not presented in the article. Calculations with the BP and LM learning 
algorithms were performed on five different sizes of learning sets and corresponding sets of independent 
samples (Table 1). 

Table 1: Size of learning sets 

ddescriptive 
ssize of 

llearning 
sset  

%% of learning set   
vvs complete set 
oof 1301 colour 

ppatches  

nnum. of 1/2RGB 
-- reflectance   
learning set 

ppairs 

num. of  
remaining  

independent 
ssamples 

very large  90 1171 130 
large  50 650 651 

medium  30 390 911 
medium  20 260 1041 
smaller  15 195 1106 

In our experiment, we observed RGB readings of the patches acquired with three disparate cameras. 
Polynomial regression has been calculated relating values of R, G and B channels of the same patches, 
pairwise between these three cameras. The relationship of equivalent channels for one of these pairs 
(Panasonic GH4 and Nikon D600), their polynomial regression functions of the second-order and the 
residuals as the difference between the polynomial regression of the 2nd, 3rd and 4th order and linear 
regression are shown in Figure 3.

Figure 3: The relationship of equivalent channels from camera GH4 and D600, the polynomial regression functions of 
the second-order and the residual parts as the difference between the 2nd, 3rd and 4th order polynomial regressions 

and the linear regression 



The efficiency of polynomial regression has been evaluated by observing the difference between the 
regression functions and actual data, averaged for each Munsell hue section. The difference for the 2nd 
order polynomial regression functions varies from 4,2% to -2,7%. When including neutrals and lightly 
hued greys, the average difference is almost 0%, with the standard deviation span between 1,49% and 
2,8% through all channels and camera combinations. With the third order, the standard deviation 
decreases a little (1,46% to 2,68%), with a still smaller decrease with the fourth order polynomial 
regression (1,43% to 2,66%). Therefore, the 2nd, 3rd and optionally fourth order regression is suitable for 
observing the sensor functions (R, G and B) of the first in dependence on the second camera.
To assess the nonlinearity between equivalent channels of cameras, we utilised the quantitative measure 
of nonlinearity (QMoN) suggested in (Emancipator & Kroll, 1993). The "dimensional nonlinearity" of a 
method is defined as the root mean square of the deviation of the response curve from an ideal straight 
line, chosen to minimise the nonlinearity. The "relative nonlinearity" is the "dimensional nonlinearity" 
divided by the distance between the largest and smallest tested values. The definition of quantitative 
nonlinearity measure suggests different nonlinear regression methods, among others also polynomial, 
which was used in our experiment. Due to a large number of test values (1301) and the associated small 
number of different values along the x-axis (167), the F-distribution with the proposed degrees of 
freedom gives very small values of the 95th percentile of the F-distribution (1,2). Hence the optional 
algorithm for searching the advisable order of polynomial regression, proposed by Emancipator and Kroll, 
is inadequate, and the nonlinearity has been therefore calculated by relative QMoN for the polynomial 
regression for up to the fourth order, as shown in Table 2. The linear regression (1st order) with 
expectedly small values is introduced as a nonlinearity measure control group. 

Table 2: Quantitative measures of nonlinearity between the equivalent channels of the cameras used, varying the 
order of polynomial regression

R channel 
nonlinearity [%] 

G channel 
nonlinearity [%] 

B channel 
nonlinearity [%] 

All channel average 
nonlinearity [%] 

oorder of 
ppolynomial 
rregression  

R_D7
00 = 
f(R_D
600) 

R_GH
4 = 
f(R_D
600) 

R_GH
4 = 
f(R_D
700) 

G_D7
00 = 
f(G_D
600) 

G_GH
4 = 
f(G_D
600) 

G_GH
4 = 
f(G_D
700) 

B_D7
00 = 
f(B_D
600) 

B_GH
4 = 
f(B_D
600) 

B_GH
4 = 
f(B_D
700) 

RGB_
D700 
= 
f(RGB
_D60
0) 

RGB_
GH4 
= 
f(RGB
_D60
0) 

RGB_
GH4 
= 
f(RGB
_D70
0) 

44th  0,929 0,707 0,498 1,160 1,448 0,599 1,520 2,953 3,258 1,203 1,703 1,452 
33rd  0,962 0,646 0,399 1,124 1,268 0,666 1,656 3,116 2,659 1,247 1,676 1,241 
22nd  0,729 0,160 0,251 0,738 1,083 0,720 0,603 1,446 1,746 0,690 0,897 0,906 

11st = lin. r.  0,002 0,002 0,001 0,002 0,002 0,002 0,003 0,003 0,002 0,002 0,002 0,002 

In our experiment, we wanted to determine the influence of using an additional camera's RGB data on 
the improvement of the reflectance reconstruction performance by ANN models. With three cameras, six 
different camera combinations and thus six sets of data have been prepared, three for modelling ANNs 
based on the single camera and three for ANN input RGB values from two cameras. For each of five 
different LS sizes (Table 1), ANNs with a varying number of neurons from 3 to 48 in their hidden layers 
have been trained, each one for 41 times by both BP and LM training algorithms. The average and the 
best results have been recorded, compared, and visualised. Unfortunately, a slower CPU-executed LM 
learning algorithm shows better results than a significantly faster GPU-executed BP algorithm (Lazar, 
Javoršek & Hladnik, 2020). The calculations were performed on two computers, partially on a 4-core 2nd 
gen. i7 CPU with Nvidia 550 GPU and the rest on a 6-core 9th gen. i7 with Nvidia RTX 2060 GPU. 
Calculations consumed more than 1000 hours of CPU and 65 hours of GPU time. 
The MSE performance of each ANN model trained with BP and LM learning algorithm has been calculated 
for the test set of samples, and the average and the best performance of 41 model iterations for each 
combination of cameras, the number of HLNs and LS size has been registered. The average and best test 
set MSE performance depending on the number of HLNs for 2RGB ANN trained with a medium-sized LS 
and both learning algorithms, with D600+GH4 camera combination, is shown in Figure 4 in the form of 
the third order polynomial approximation. 



Figure 4: Mean and best test set performance of BP and LM trained ANNs, with 2RGB inputs of D600 & GH4 cameras 
and 41 iterations for each number of HLNs, with the third order regression trendlines for performances 

Even when the training of each ANN model has been repeated many times, the mean and even more the 
best MSE values jump around a bit. It is possibly due to the random selection of training, validation, and 
test sets from the LS at the beginning of training for each ANN model. Besides, in most cases, the local 
minima of the cost function are found by the nature of the ANN training algorithm. In some cases, the 
polynomial regression curve is plotted along with the data plot, whereas for better illustration, only 
polynomial regression curves will be presented for the most part. The performance of ANNs trained with 
the LM algorithm is always better than the BP algorithm, so only the results obtained with the first one 
will be presented below. 
The interpretation of results opens various aspects due to the collection of the ANN models' mean and 
best performance, variations in modelling ANNs with two different RGB input sets, six camera 
combinations and a varying number of HLNs: 

comparison of mean vs best MSEs, and varying LSs, for each camera combination
comparison of all camera combinations best MSEs depending on the number of HLNs, for each
fixed LS size
comparison of the mean and best one- and two-camera MSEs, depending on the number of
HLNs, for each fixed LS size
comparison of all six pairs of 2RGB vs 1RGB ANN MSE performance improvements as a function
of LS sizes

In the following, the procedures of these four aspects are described in more detail. 
Observing the mean and best MSE in parallel as a function of the number of HLNs, by varying LS sizes for 
each of the six camera combinations shows that the best MSE values for all five LS sizes reside 
significantly below the mean values. Only in the case of one-camera data does the best MSE curve with 
the smallest LS at a higher number of HLNs partially surpass the mean MSE curve of the largest LS. For the 
D700+GH4 camera combination, the mean vs best trend observation is shown in Figure 5.  

Figure 5: Mean and best MSE of 2RGB LM trained ANNs with D700 & GH4 camera combination and varying learning 
set size in dependence of the number of HLNs, shown by the trend lines of the 3rd order polynomial approximation.



Larger learning sets give better results in the search for the best performance. Here the ANN performances 
of LS sizes from 1171 to 390 colour patches almost overlap, and the trends for smaller LS sizes of 260 and 
195 are still very close to the best results. 
If we focus on ANN MSE performance as a function of the number of HLNs, observing in parallel all six 
camera combinations at each LS size separately, the ANNs trained with 2RGB perform appreciably better 
than with 1RGB input data. Figure 6 depicts the best performance for all six camera combinations and the 
smallest LS. By increasing the LS size from the smallest to the largest, the area between the trend curve of 
the 1RGB ANNs largest MSE and the curve of the 2RGB smallest MSE is almost halved. The range of MSE 
minima for the six camera combinations at the largest LS spans from 0.00030 to 0.00047, while at the 
smallest LS, from 0.00040 to 0.00068. 

Figure 6: 3rd order polynomial regression trends of the best MSE performance ANNs trained with LM algorithm and 
smallest learning set (195), plotted for all six camera RGB input combinations 

For each combination of two-camera models, the comparison of MSE performance has been made with 
1RGB models of two involved cameras, and mean, and best performances have been visualised. In Figure 
7, only one such combination is shown: the mean and best performance of ANNs trained with inputs from 
2RGB D600+GH4 combination and 1RGB GH4, alongside the MSE performance improvement with two 
versus one camera input, as a difference in [%] = 100*(MSE1RGB-MSE2RGB)/MSE1RGB). For clarity, the third-
order polynomial regression curves are displayed, with the actual values in only two cases, for illustration. 
The circle at 1 and 2RGB best MSE regression curves indicates the first minimum. In the nearby area, the 
best performing ANN models could be found within a moderate ANN modelling time (Lazar, Javoršek & 
Hladnik, 2020).

Figure 7: Mean and best performance of ANNs trained with LM algorithm and 1RGB (GH4) and 2RGB (D600+GH4) 
medium size learning set 

To compare 2RGB versus 1RGB ANN MSE performance improvements as a function of LS sizes, the MSE 
performance improvement at the points of the first minimum of MSE 3rd order polynomial regression 
has been calculated for six two versus one-camera combinations and five LS sizes (Figure 8). Comparing 
the mean and the best MSE performance of 2RGB ANNs, the best is, on average, between 33% and 47% 



better than the mean MSE, but, in terms of 2 vs 1RGB ANN MSE performance improvement, for the best 
ANNs, it is only about 5% better than the mean. 

Figure 8: MSE performance improvement of 2RGB over 1RGB ANNs at peak values of the best 2RGB ANN performance 
for all two-camera combinations as a function of the learning set size 

Reflectance reconstruction efficacy with additional quality measures has been evaluated for the best 
1/2RGB ANN LM trained models, employing the five sets of leftover independent samples (Table 1). Two 
quality measures and one error measure were calculated to compare the measured (original) and the 
reconstructed spectra of independent samples. 
The goodness of Fit Coefficient (GoFC) and the Peak Signal to Noise Ratio (PSNR) were used as the quality 
measures to compare both spectra directly. GoFC results were divided into four classes (Poor, Accurate, 
Good, Excellent) as proposed in (Hernández-Andrés, Romero & Lee, 2001), while PSNR into three (Poor, 
Accurate, Good) as proposed in (Lehtonen et al., 2009). Figure 9 compares the quality estimations of the 
best 1RGB and 2RGB LM trained ANNs with LS of 390 samples and, consequently, the 911 independent 
samples classified into the proposed classes. Only the sums of percentages for the two best classes 
are shown. 
CIE 2000 was calculated as the error measure nearing the human eye's colour difference perception. 
Combining different illuminations (incandescent A, daylights D50, D65, and fluorescent F2) with the 
measured and reconstructed reflectance spectra, the pairs of L*a*b* colour values were calculated. Then 
their ΔE00 colour differences were sorted into seven quality classes (Hardly, Slight, Noticeable, 
Appreciable, Much, Very much and Strongly Perceptible Colour Difference) proposed in (Yang, Ming & 
Yu, 2012). 

Figure 9: Reflectance reconstruction quality assessment of the best 1 and 2RGB ANNs trained with the LM algorithm 
and medium learning set size of 390 patches, with results that fall into the two best classes 

The composite in Figure 10 presents some examples of bad and good reflectance spectra reconstruction. 
Falu Red, Sahara Yellow, Casal Blue and Deep Saphire Blue have "noticeable" or "appreciable" perceptible 
colour differences, "poor" PSNR and "poor" or "accurate" GoFC. Basket Ball Orange, Pastel Olive Green, 



Fountain Blue and Opera Mauve Purple have "hardly" or "slight" perceptible colour difference, "good" or 
"Excellent" GoFC and either "accurate" or "good" PSNR. 

Figure 10: Examples of some bad and good reflectance reconstruction by 2RGB ANN trained with LM algorithm and 
medium learning set size of 260 patches

Shown reconstructions are made by 2RGB ANN trained upon LS of 260 patches (20% of the complete set) 
captured by D600 and GH4 cameras. Reconstructed samples belong to the separate independent set of 
1041 patches not included in LS. For a better representation of the colour differences, in Figure 11, the 
above colours are also presented with colour fields, where the left field represents the measured 
(original) colour and the reconstructed colour on the right. The colours of the example patches have been 
calculated from the original and reconstructed spectra into AdobeRGB colour space considering D50 
illuminant and a 2° observer.

Figure 11: Colour examples of some measured (M) and reconstructed (R) colours, where the colours on the left have 
considerable and the colours on the right have small error estimates. 

The described method has some limitations regarding camera settings and illumination, but they are not 
challenging to brace: 

The camera capturing mode must be set to manual and should not be changed during the time
interval from capturing the object to capturing the table of reference colour patches.
The illumination should be invariant in the area of the object and reference patches. Uneven
illumination, shadows and glares are unwelcome.
If possible, the reference colour table of suitable size should be captured simultaneously with
the object of interest (e.g. drawing or painting). Otherwise, we should strive for constant



illumination during the time interval of capturing one after another, which is especially 
important when shooting in daylight. 
For capturing small flat objects, a flatbed scanner could be used. In this case, scanner options for
image auto-correct options must be switched off during the time interval of sequential scanning
of objects and reference samples.

When using two cameras to capture an object and reference patches, it is also necessary to ensure the 
registration of both captured images, which would be essential in practical implementation. Image 
registering is a broad topic that goes beyond the purpose of our experiment, in which capturing the same 
colour "pixels" with different cameras was provided through sequential capturing of the same 
homogenous colour patch surface under invariant illumination. 
The expansion of the ANN training set from the data of one camera makes sense as long as the new input 
data contains additional information, which would not happen in the case of linear dependence of the 
equivalent channels of the cameras used. Finding nonlinearities to enhance reflectance reconstruction is 
thus crucial. In (Emancipator & Kroll, 1993), the lower limit of 2,5% as a criterion of nonlinearity 
assessment of curves for use in chemistry is proposed with the remark that in other fields of use, the 
lower limit may differ. In our experiment, only the blue channel, in some cases, with the 4th and third-
order regression function, exceeds the proposed lower limit (Table 2). But, considering the improvement 
of the reflectance reconstruction, despite the otherwise small nonlinearities, we can assume that 
nonlinearities close to 1% are sufficient to improve the performance of 2RGB trained ANNs. In all 
considered cases, a nonlinear connection was detected between the equivalent channels of the 
experimental camera pairs, thus confirming our first hypothesis. 
It is not straightforward to see a connection between the nonlinearities of paired cameras' equivalent 
channels and reflectance reconstruction improvement. In the R channel, QMoN values of D700 vs D600 
exceed the other two camera combinations, in the G channel, this is the case with GH4+D600, and in the 
B channel, the GH4+D700 beats the other two camera pairs. Even though the D700+GH4 camera pair's 
QMoN for the R channel is lower than 0,5%, the 2RGB ANN performance still surpasses both the 1RGB 
ANNs performances, most likely due to some degree higher nonlinearities in the G and B channels.   
Observing MSE performance in dependence on camera combinations (Figure 6), when training ANN with 
the 1RGB LS, the ANNs trained with the D600 camera performs better than with GH4 and even better 
than with D700. With these results, it could be expected that 2RGB ANNs trained with data from the 
combination of better-performing single camera learning sets will thus perform better. However, on the 
contrary, ANNs trained with the D700+GH4 perform better than those trained with the D600+D700 or 
D600+GH4 learning sets. It suggests that when training ANNs for reflectance reconstruction from RGB 
data of two or more cameras, the impact of individual cameras' somewhat better performance is 
not crucial. 
Set side by side, the MSE performance of double and single-camera readings trained ANN models at peak 
values of the best ANN performance as a function of LS sizes (Figure 8), the most pronounced 
improvement (> 35%) appears at D600+D700 compared to D700 at smaller LS, and the smallest at 
D600+GH4 compared to D600 (10%) with all LS sizes. It can be attributed to a good performance of the 
ANNs trained with the D600 single camera readings. But despite this, and only slight nonlinearity of the 
GH4 R channel in relation to the R channel of D600 (Table 2 - middle R column, Figure 3 - left graph), the 
improvement of these two-camera ANNs' performance, in comparison to D600 single-camera trained 
ANNs, is still evident. The most noticeable improvement has been accomplished with D700+GH4 
compared to both single-camera ANN performances, where two-camera ANN performance vs D700 is for 
all learning sets well above 30%, and vs GH4 above 20%. Comparing the performance of ANNs trained 
with the learning set of a pair and then with two individual cameras, the performance improvement is 
evident in all two-camera combinations. Therefore, our second hypothesis was experimentally confirmed. 
To verify our findings, the reflectance reconstruction efficacy has been tested on 911 independent 
samples, wholly separated from the medium-sized training set of 390 samples (Figure 9). Various quality 
measures were used: MSE clearly confirms our findings, ΔE00 for four different illuminants also shows 
noticeable improvement with 2RGB compared to 1RGB trained ANNs, whereas GoFC does not manifest 
an unequivocal distinction between 1 and 2RGB trained ANNs.  



With the presented study, we wanted to improve the spectral reflectance reconstruction from camera 
RGB values while capturing object colours with two instead of one camera. As detected, the relationship 
between the equivalent channels of cameras employed proved to be nonlinear. Therefore, each camera 
gives a bit different aspect to colour readings and adds some enrichment to the learning set. The ANN 
training benefits from this information, resulting in a better reflectance reconstruction, as presented 
through the attending experiment and confirmation of our hypotheses. 
There are certainly possibilities to improve the results of our experiment. The selection of samples in five 
learning sets is fixed, does not vary, and each smaller LS is a subset of a previous larger one. Learning sets 
have been selected visually and are most likely not entirely optimal. A better selection could give better 
results. Another possibility is upgrading the structure of the artificial neural network, e.g., by adding 
additional hidden layers. Nevertheless, these suggestions are out of the scope of the current experiment 
and may be explored in the future. 
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